
The Controller Manager, Input Component, and You

All content © 2019 DigiPen (USA) Corporation, all rights reserved.

TLDR

These are the functions most important to you.

InputGetMoveUp()

InputGetMoveRight()

InputIsMoving()

InputGetInteractPressed()

InputGetInteractReleased()

InputGetInteractTriggered()

InputGetAttackPressed()

InputGetAttackReleased()

InputGetAttackTriggered()

TLDR 1

The Controller Manager 2

ControllerState 2

ControllerManagerRefresh 3

ControllerManagerStateUpdate 4

The Input Component 5

Input Get Functions 5

Keybinds 6

The Controller Manager, Input Component, and You

All content © 2019 DigiPen (USA) Corporation, all rights reserved.

The Controller Manager

The controller manager surprisingly manages the xinput controllers connected to the game.

It consists of:

Structures

- ControllerState

Functions

ControllerManagerRefresh()

ControllerManagerStateUpdate()

ControllerManagerGetInput()

ControllerManagerGetButtonsReleased()

ControllerManagerGetButtonsTriggered()

We’ll focus on the ControllerState structure, the Refresh function, and the StateUpdate function.

ControllerState

typedef struct ControllerState

{

 // Whether or not the controller port is connected

 bool controllerConnected;

 // The xinput state structure for this controller

 XINPUT_STATE controllerState;

 // The buttons that were released this frame

 WORD buttonsReleased;

 // The buttons that were triggered this frame

 WORD buttonsTriggered;

} ControllerState;

The Controller Manager, Input Component, and You

All content © 2019 DigiPen (USA) Corporation, all rights reserved.

The ControllerState structure represents the variables that pertain to a controller connected (or

not connected) to the game. Within the ControllerManager.c file there exists an array of 4

ControllerState structures, each belonging to the 4 controllers that could potentially be

connected to the game. The array indices correspond to the ports the controllers are connected

to. Index 0 represents the first controller connected to the computer.

static ControllerState controllerStates[MAX_CONTROLLERS] = { 0 };

The controllerConnected boolean variable is only set to true if the controller is connected to

the game. This boolean is set in the ControllerManagerRefresh() function. This allows the

ControllerManagerStateUpdate() function to only focus on querying the state of controllers that

are connected to the system.

The controllerState variable holds the current XINPUT_STATE structure for the given

controller.

From https://docs.microsoft.com/en-us/windows/desktop/xinput/structures

The buttonsReleased and buttonsTriggered variables are of type WORD, which is an alias

for an unsigned short. They contain a number comparable to the wButtons variable in the

XINPUT_GAMEPAD structure. The bits that are set in these variables represent the buttons

from the xinput controller that were released / triggered respectively during the current frame

that the controller state was updated. These two variables can be accessed with the

ControllerManagerGetButtonsReleased() and ControllerManagerGetButtonsTriggered()

functions.

ControllerManagerRefresh

This functions only purpose is to check which controller ports are active and which are not. This

function attempts to query the xinput state from all 4 controller ports. If there is no controller

connected to a given port, the controllerConnected boolean variable is set to false. If it is, it

will be set to true.

https://docs.microsoft.com/en-us/windows/desktop/xinput/structures

The Controller Manager, Input Component, and You

All content © 2019 DigiPen (USA) Corporation, all rights reserved.

This function should NOT be called every frame. In fact at the time of writing this, it is only called

when a new level loads. However, ideally this function should be called at an interval (maybe

every 5 seconds?) to account for technical difficulties where a controller possibly gets

disconnected and then reconnected.

ControllerManagerStateUpdate

This function updates the state of the controllers currently connected to the system. After this

update, the current input values from each controller can be retrieved from game code.

Steps to updating the controller state:

1. Loop through the 4 controllers

a. If the controller port is inactive, skip to the next controller

2. Get the state of the controller, and if it is correctly connected continue

3. Reset the released and triggered button variables (to ensure the relevant bits are only

active for one frame)

4. If the controller state packet numbers are different (indicating that the controller state has

changed), then record the new state

a. Record the buttons state for the previous and current frame.

b. Bitwise-XOR the previous and current state to identify which buttons changed

between the previous and current frame

c. Bitwise-AND the previous state and the buttons that changed this frame to

identify which buttons were released this frame

d. Bitwise-AND the current state and the buttons that changed this frame to identify

which buttons were triggered this frame

e. Finally, save the current controller state into the ControllerState structure for this

controller.

The Controller Manager, Input Component, and You

All content © 2019 DigiPen (USA) Corporation, all rights reserved.

The Input Component

The input component is another component that can be attached to a game object. When it is

created and attached to an object, it is given an input source that indicates where its input

should be coming from, whether it be from 1 of the 4 controller ports, or potentially an AI.

InputGetMoveUp()

InputGetMoveRight()

InputIsMoving()

InputGetInteractPressed()

InputGetInteractReleased()

InputGetInteractTriggered()

InputGetAttackPressed()

InputGetAttackReleased()

InputGetAttackTriggered()

Input Get Functions

These are the most important functions for the user (YOU!) to know about. These functions

were modelled after the AEInputCheck functions.

InputGetMoveUp() and InputGetMoveRight() will give you the movement input in a range from

-1 to 1.

InputIsMoving() will allow you to check if ANY movement is being input.

The InputGetInteract functions will return the status of the “Interact” input keys. For player 1,

this might be the ‘E’ key on the keyboard or the ‘X’ button on the controller.

The InputGetAttack functions will return the status of the “Attack” input keys. For player 1, this

might be the ‘Q’ key on the keyboard or the ‘A’ button on the controller.

The Controller Manager, Input Component, and You

All content © 2019 DigiPen (USA) Corporation, all rights reserved.

Keybinds

All of the keys/buttons for these inputs can be modified using the defines at the top of the

Input.c file.

// MoveUp keys

#define MOVE_UP_P0 'W'

#define MOVE_DOWN_P0 'S'

#define MOVE_UP_P1 'Y'

#define MOVE_DOWN_P1 'H'

#define MOVE_UP_P2 'P'

#define MOVE_DOWN_P2 ';'

#define MOVE_UP_P3 VK_UP

#define MOVE_DOWN_P3 VK_DOWN

// MoveRight keys

#define MOVE_RIGHT_P0 'D'

#define MOVE_LEFT_P0 'A'

#define MOVE_RIGHT_P1 'J'

#define MOVE_LEFT_P1 'G'

#define MOVE_RIGHT_P2 '\''

#define MOVE_LEFT_P2 'L'

#define MOVE_RIGHT_P3 VK_RIGHT

#define MOVE_LEFT_P3 VK_LEFT

// Interact keys

#define INTERACT_P0 'E'

#define INTERACT_P1 'U'

#define INTERACT_P2 '['

#define INTERACT_P3 VK_RSHIFT

#define INTERACT_CONTROLLER XINPUT_GAMEPAD_X

// Attack keys

#define ATTACK_P0 'Q'

#define ATTACK_P1 'T'

#define ATTACK_P2 'O'

#define ATTACK_P3 '/'

#define ATTACK_CONTROLLER XINPUT_GAMEPAD_A

